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Abstract—Fully Homomorphic Encryption (FHE) has become
a key enabler for secure computation with end-to-end quantum-
safe encryption. Unlike previous cryptographic paradigms which
necessitate decryption of the data in order to carry out computa-
tions, FHE makes it possible to compute in the encrypted space,
thus eliminating potential vulnerabilities that may arise from
storing unencrypted data on untrusted third-party cloud servers.
However, the aforementioned encrypted computation operations,
while quantum-safe, come with substantial performance and
energy overheads, in comparison to the equivalent unencrypted
operations on plaintext. Several algorithmic improvements have
significantly reduced this overhead, and yet encrypted computa-
tions remain 3–4 orders of magnitude slower and less efficient
than the corresponding unencrypted operations. This has resulted
in the emergence of several novel architecture proposals, software
libraries and runtimes with the aim of bridging this gap.

In this paper, we carry out a detailed characterization of
popular FHE libraries on a server-class CPU and GPU across key
FHE primitives, and on an end-to-end application use case for
detecting credit card fraud through inference on encrypted data.
We study the effect of both algorithmic parameters such as the
security level, polynomial degree, integer/floating point precision
and computational depth, as well as system-level parameters,
such as types of processing engine and number of allocated
threads, on the performance and energy efficiency of execution.
We hope that this characterization can help bridge the gap
between cryptographers and system architects in order to realize
a commercially-viable system enabled with end-to-end Fully
Homomorphic Encryption.

I. INTRODUCTION

In the age of ubiquitous computing and data-driven appli-
cations, the need to protect sensitive information while still
allowing for computation on that data has become paramount.
Fully Homomorphic Encryption (FHE) has emerged as a
promising cryptographic technique that addresses this funda-
mental challenge. Unlike traditional encryption schemes that
require the data to be decrypted before any computation can
take place, FHE allows for data to remain encrypted while
performing indefinite number of computations on it.

In this work, we present a detailed characterization of (i)
fundamental FHE primitives, and (ii) a Privacy-Preserving Ma-
chine Learning (PPML) inference workload for detecting fraud
in credit card transactions. We characterize the strong and
weak scaling trends and power consumption of several state-
of-the-art HE libraries, namely, Lattigo [11], OpenFHE [2],
HEaaN [4], SEAL [10]. Our characterization is performed
using HElayers [1], which is a software development kit
(SDK) for the practical and efficient execution of encrypted
workloads using FHE and is designed to enable application

developers and data scientists to apply privacy-preserving tech-
niques without requiring domain knowledge of cryptography.
HELayers uses data structures known as tile tensors that enable
the implementation of generalizable data packing techniques
across several different HE library implementations. This al-
lows us to carry out effective comparisons across several FHE
configurations, libraries, hardware and software platforms.
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Fig. 1. Dataflow graphs of basic CKKS-FHE primitives. Edge annotations
show the data movement in terms of parameters N , l, and W .

II. FHE PRIMITIVES

All evaluations in this paper focus on Cheon-Kim-Kim-
Song (CKKS) [4], which is an FHE scheme that allows for
computation on fixed-point numbers. This makes it a good
fit for PPML applications that operate on real numbers. In
Figure 1, we present dataflow graphs of the basic CKKS-
FHE primitives that form the building blocks of any FHE
application. We refer the reader to [5] for further reading.
PtAdd performs the element-wise addition of an encrypted

message with a plaintext encoded message. PtMultRaw
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Fig. 2. Execution time profiling results for HEaaN on Intel Xeon CPU with different number of threads for N = 128k, L = 29, λ = 128, fp = 51, ip = 9.
Each experiment is repeated 100 times. Error bars show 95% confidence interval.

performs the element-wise multiplication of an encrypted
message with a plaintext encoded message, each with a
scaling factor of ∆; however, this results in a ciphertext
that has a scaling factor of ∆2. In order to prevent the
scale from growing with subsequent operations, an operation
called Rescale is performed to scale the result approximately
back to ∆. PtMultRaw combined with Rescale constitutes
PtMult. A variant of PtMultRaw, PtScalarMultRaw,
considers multiplication of an encrypted message with a scalar
plaintext value. Add performs the element-wise addition of
two encrypted messages. MultRaw performs the element-
wise multiplication of two encrypted messages. However,
this operation results in three polynomials, which need to
be homomorphically converted back to two polynomials in
order to prevent a growth in the number of polynomials
for chained operations; this is done using Relinearize. A
final Rescale step is required for the same reason as men-
tioned for PtMultRaw. Thus, Mult comprises of MultRaw,
Relinearize, and Rescale. Rotate performs a homomorphic
rotation of the slots of the encrypted message. It comprises
of automorphisms, which are specific permutations of the
coefficients of the ciphertext, followed by a Relinearize.

In addition, some schemes support bootstrapping, which is
a sequence of the aforementioned operations that reduces the
noise within the ciphertext to an acceptable level, allowing
further homomorphic operations to be performed without
errors. HElayers supports several variants of bootstrapping.
BSUnitRange bootstraps a ciphertext that encrypts values
where the real part is in the range [−1, 1] and imaginary part is
0. BSUnitRangeComplex bootstraps complex values where
the real and imaginary parts are each in the range [−1, 1].
BSUnitRangeFused bootstraps two real valued ciphertexts
in the range [−1, 1] together by packing the second ciphertext
into the complex part of the first ciphertext. Note that boot-
strapping is only supported by a few FHE libraries and in this
work we limit our bootstrapping evaluation to HEaaN.

III. RESULTS

We present results detailing our comparative evaluation of
performance and power for different implementations of key

FHE primitives across HEaaN, SEAL, Lattigo and OpenFHE
libraries. We also evaluate a representative application for
credit card fraud detection across these different HE libraries.

Figure 2 shows strong scaling results for the basic FHE
primitives using the HEaaN library on a Xeon Gold 6258R
CPU. We first note that performance scaling saturates around
16 cores for a multiplicative depth (L) of 29. Relinearize and
Rescale (which internally performs automorphism + Relin-
earize) are much more complex than element-wise operations,
such as additions and multiplications. The bootstrap operation
is extremely expensive, taking up to a second even with
several threads. Keeping Amdahl’s law in mind, it is therefore
crucial to design accelerators with bootstrapping in mind.
This has been reflected in recent works on FHE hardware
acceleration [7]–[9], [12].

Fig. 3. Execution time profiling results on Intel Xeon CPU and NVIDIA A100
GPU with different HE library implementations for nthreads = 8, N =
32k, L = 4, λ = 128, fp prec = 40, ip prec = 12.

Figure 3 shows the comparison of execution times for differ-
ent primitives with different HE library implementations. It is
evident that the GPU implementation using the HEaaN library
(run on an NVIDIA A100 GPU) is significantly faster for all
the primitives. The CPU implementation of HEaaN also scales
much better than the other libraries resulting in 1 to 2 orders
of magnitude faster performance for this library compared to
the others. Note that the same configuration may not be valid
across all HE libraries, even when the security level is fixed.
Hence, one must carry out a detailed design space exploration
of these parameters in order to achieve a fair comparison
across the different libraries. In our work, we perform a grid



search through all valid (N,L, fp prec, ip prec) parameters
for a fixed security level using valid values from [3]. Addi-
tionally, we note that other library implementations such as
Lattigo and SEAL do not utilize multiple cores within the
same ciphertext, or use them in a highly limited manner (as
in the case of OpenFHE). In contrast, HEaaN exploits one or
more levels of parallelism among coefficient-level, RNS-limb-
level and/or polynomial-level.
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Fig. 4. Power comparison across various HE primitives for different HE
library implementations using nthreads = 8, N = 16384, L = 10, λ =
128, fp prec = 40, ip prec = 2 (top) and nthreads = 8, N =
32768, L = 32, λ = 128, fp prec = 44, ip prec = 2 (bottom). Note
that the selected N = 32k configuration was invalid for SEAL.

We also compare the dynamic power observed while run-
ning these primitives on the Xeon CPU, as shown in Figure 4.
The figures on the top and bottom represent two different
configurations with 16k and 32k slots respectively, running
with 8 threads on a single package consisting of 4 Hyper-
threaded (HT) cores. We observe that HEaaN consumes over
2× power compared to the other libraries due to the fact that it
scales to a larger number of threads. However, the significantly
lower execution time observed in HEaaN results in it being the
most energy-efficient implementation despite its higher power.

Ini
tCon

tex
t

Ini
tM

od
el

En
cry

ptI
np

ut

Pre
dic

t

Decr
yp

tRe
sul

t

Operation

10,000

100,000

1,000,000

Ti
m

e 
(µ

s)

Flavor
HEAAN_NN_BENCH_CPU
HEAAN_NN_BENCH_GPU

LATTIGO_NN_BENCH_CPU
SEAL_NN_BENCH_CPU
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In addition to the FHE primitives, we also evaluate an
end-to-end application for credit card fraud detection. We
use the FraudNet model, which is a 3-layer multi-layered
perceptron (MLP) for fraud detection evaluated on the Kaggle
dataset, consisting of nearly 300k user-anonymized credit card

transactions [6]. The application is split into various sub-
operations that cover initialization, encrypting the input data,
carrying out prediction on the encrypted data and finally
decrypting the output. The results are shown in Figure 5. It
is interesting to observe that, in contrast to the primitive, the
GPU implementation is comparable to, or even slower than
the corresponding CPU implementation for the initialization,
encryption and decryption operations. On further investigation,
we find that the GPU is slower than the CPU for EncryptInput
as HElayers generates different optimal graphs (consisting of
different number of ciphertexts) for the CPU and GPU cases.

Unlike the initialization operations which only occur at
the beginning of the program, the encryption, decryption and
prediction operations scale with number of inputs and are
hence the focus of our analysis. We observe that encrypting
the data takes 3× as long as the fraud prediction operation on
a GPU, for the given batch size of 4096. Even for a batch size
of 1, EncryptInput takes 40% of the time of Predict, indicating
an Amdahl bottleneck. Hence, further research into realizing
novel architectures for FHE-encrypted AI applications must
necessarily focus on encryption and decryption, in addition to
the encrypted inference operations. On an isolated experiment
where we profiling the encode+encrypt of data samples during
the fraud network inference, using HEaaN-CPU and HEaaN
GPU libraries, we observed the GPU to be only 1.5× faster
(compared to an order-of-magnitude speedup on Predict), with
the bottleneck being the encryption. This, further, calls for
research into accelerating HE encryption.

IV. CONCLUSION

In this paper we characterized the various operations in
Fully Homomorphic Encryption (FHE) applications, based
on detailed performance and power measurements on real
hardware. We compared the implementations of individual
FHE primitives, as well as an end-to-end credit card fraud
detection application, using different standard FHE libraries,
namely HEaaN, SEAL, Lattigo and OpenFHE. Based on our
evaluations, we arrived at several key conclusions,

• The optimal configuration, in terms of (N,L, λ, fp, ip),
can vary significantly depending on the exact HE library
being used, even when the security level is fixed.

• HEaaN offers the most scalable, high-performance, and
energy efficient implementation of both the evaluated
FHE primitives as well as the end-to-end application
(credit card fraud detection).

• While GPUs are highly effective in speeding up encrypted
inference operations, the benefits are much lower for the
encryption operation itself. In fact, FHE encryption can
often be the key performance bottleneck, especially in a
hybrid cloud-edge application scenario, which might en-
tail encryption/decryption being implemented on-premise
in a resource constrained manner.
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