
Toward Practical Privacy-Preserving Convolutional Neural Networks
Exploiting Fully Homomorphic Encryption

Jaiyoung Park*, Donghwan Kim*, Jongmin Kim*, Sangpyo Kim*, Wonkyung Jung†, Jung Hee Cheon*, and Jung Ho Ahn*

* Seoul National University, Seoul, South Korea
{jeff1273, eastflame, jongmin.kim, vnb987, jhcheon, gajh}@snu.ac.kr

† Samsung Electronics, Suwon, South Korea
wk2.jung@samsung.com

Abstract
Incorporating fully homomorphic encryption (FHE) into

the inference process of a convolutional neural network (CNN)
draws enormous attention as a viable approach for achiev-
ing private inference (PI). FHE allows delegating the entire
computation process to the server while ensuring the confiden-
tiality of sensitive client-side data. However, practical FHE
implementation of a CNN faces significant hurdles, primarily
due to FHE’s substantial computational and memory overhead.
To address these challenges, we propose a set of optimizations,
which includes GPU/ASIC acceleration, an efficient activa-
tion function, and an optimized packing scheme. We evaluate
our method using the ResNet models on the CIFAR-10 and
ImageNet datasets, achieving several orders of magnitude im-
provement compared to prior work and reducing the latency
of the encrypted CNN inference to 1.4 seconds on an NVIDIA
A100 GPU. We also show that the latency drops to a mere 0.03
seconds with a custom hardware design.

1. Introduction
Privacy regulations such as GDPR [22] have propelled data
confidentiality to the forefront of concerns for cloud compa-
nies offering machine learning (ML) as a service. Fully homo-
morphic encryption (FHE) [7], which can evaluate arbitrary
functions on encrypted data called ciphertext, has garnered at-
tention as a promising solution with robust security assurance.
However, FHE-based computation exhibits distinct character-
istics from their unencrypted counterpart, and naïvely apply-
ing FHE to ML inference results in significant inefficiencies.
These disparities pose challenges in developing an end-to-end
ML framework with FHE, which has been perceived to be
costlier than alternative security solutions [9, 19].

We unlock the potential of FHE-based solutions in the con-
text of private inference (PI). Our focus lies on the framework
for PI of convolutional neural networks (CNNs). We employ
the RNS-CKKS FHE scheme [5], which supports handling
real and complex numbers. The PI framework involves two
parties: a client requesting CNN inference on encrypted data
and a server conducting the evaluation using FHE operations.
The robust security offered by RNS-CKKS guarantees the non-
disclosure of sensitive information, encompassing both the
client’s input data and the server’s CNN model while securely
delivering the inference results back to the client.

Our contributions span various layers of computer systems,
and each contribution can be utilized separately to acceler-
ate FHE-based CNN inference in other systems. With all
techniques combined, we achieve orders of magnitude higher
performance for FHE-based CNN inference, reducing the en-
crypted inference latency of ResNet20 to a mere 1.4 seconds
on a GPU and 0.03 seconds on a custom hardware design.

The following list summarizes the key contributions:
• We are unlocking new horizons in FHE-based PI by har-

nessing the latest GPU advancements and incorporating
techniques derived from accelerator-based research, thereby
introducing a new achievable milestone in this field.

• We combine AESPA [18], a novel activation function tai-
lored to FHE-based PI, which converts ReLU into a simple
quadratic function during inference through training-time
specialization.

• We leverage an efficient CNN library with novel packing
methods named HyPHEN [11], which reduces the computa-
tion and memory requirements of FHE-based PI of CNNs.

2. A GPU Library Supporting RNS-CKKS

Due to the high degree of parallelism in RNS-CKKS, GPUs
have a great potential for performance enhancement by uti-
lizing the massive number of computing resources in GPUs
through parallelized computation. In RNS-CKKS, the unit of
computation is a polynomial in ZQ[X ]/(XN +1), which is an
L×N integer matrix where N is the degree of the polynomial
and L is the maximum multiplicative level of a ciphertext. A
polynomial is a huge matrix; typical values for L and N are
respectively around 1–60 and 215–216. By using GPUs, var-
ious computations on polynomials required for RNS-CKKS
can mostly be performed in parallel. For example, two polyno-
mials can be added by L×N parallel element-wise additions.

However, the large size of the computational granularity
also results in a memory bottleneck because faster memory
units (e.g., L2 cache) in GPUs do not have enough capacity
to accommodate it. To overcome the bottleneck, we applied
memory-centric optimizations for major computation kernels,
such as NTT and base conversion, in prior work [10, 14]. We
have fused multiple GPU kernels to perform multiple jobs at
once for each memory load and identified eligible RNS-CKKS
parameter sets for GPUs (P2 and P3 in Table 1 vs. P1).



Table 1: Execution time (ms) comparison of our GPU library vs.
state-of-the-art RNS-CKKS GPU acceleration studies, 100× [10]
and TensorFHE [6]. P1, P2, P3: fused, fusedL, and fusedH parameters
in Table 2 of [10]. P4, P5: paramaters in Table 3 of [10].

Impl. 100× TensorFHE* Ours

GPU V100 A100-SXM A100-PCIe
Word size 64 bits 32 bits† 64 bits

HMult (P1) 17.40 6.65 11.30
HMult (P2) 2.96 - 2.59
HMult (P3) 7.96 - 5.47
Boot (P4) 328.25 250.45 171.27
Boot (P5) 526.96 - 355.84

* TensorFHE execution time is divided by 128 as it batches 128 operations.
† We were unable to reproduce a working FHE implementation with the

support for bootstrapping using the 32-bit word size due to the negative
impact of small word sizes on the precision of RNS-CKKS. Recently
proposed composite scaling [1] can offset the precision loss, but it requires
using 2× larger L than that of 64-bit implementations for the same precision.
Therefore, using the same parameter set greatly favors TensorFHE.

Combining the latest GPU advancements and recent al-
gorithmic optimizations, our GPU library outperforms state-
of-the-art RNS-CKKS GPU studies, 100× [10] and Ten-
sorFHE [6], in major HE operations (see Table 1). Leveraging
A100 leads to improved performance in homomorphic mul-
tiplication (HMult) compared to the previous use of V100
in 100×. Algorithmic optimizations in bootstrapping (Boot),
including techniques in [3], further widen the performance
gap between our solution and the 100x bootstrapping.

3. Replacing Activation Functions with AESPA
FHE-based PI implementations are often bottlenecked by acti-
vation functions such as ReLU. For example, [16, 17] utilize a
high-degree polynomial approximation of ReLU to implement
RNS-CKKS CNN, but their implementation is severely bottle-
necked by the high cost of evaluating a high-degree polynomial
and frequent bootstrapping incurred by it; e.g., bootstrapping
and ReLU account for 84% of the total execution time in [16].

To remedy this problem, we exploit AESPA, a novel low-
degree polynomial activation function that enables replacing
ReLU with a quadratic function. AESPA utilizes the orthogo-
nal polynomial expansion of ReLU as an activation function
and performs basis-wise normalization during training. For
brevity, we focus on the Hermite expansion of ReLU. Let f̂i,
hi, and d each denote the i-th coefficient for the Hermite expan-
sion, the i-th Hermite polynomial, and the degree of Hermite
expansion; our activation function is defined as follows:

ReLU(x) = γ

d

∑
i=0

f̂i
hi(x)−µ√

σ2 + ε
+β = γ

d

∑
i=0

f̂ihi(x)+β (1)

AESPA replaces both ReLU and batch normalization layers
in a CNN. γ and β are learnable parameters and hi(x) is a
batch-normalized value of hi(x). Please refer to [18] for a
more detailed description of AESPA.

Fully Connected

BasicBlock

Conv2 Bootstrap AESPA

BasicBlock
(stride=2) BasicBlock BasicBlock

BasicBlock
(stride=2) BasicBlock BasicBlock

AvgPool

BasicBlock BasicBlock

AESPA(1) Conv2(2)Conv1(2) Boot

Basic Block

AESPA(1)

10 Output Logits

Shortcut

Encrypted 
Image

l = 6

. . .

Figure 1: ResNet20 model built with the HyPHEN basic blocks.
Each layer’s multiplicative level consumption is also shown.

4. HyPHEN: An Efficient Packing Method for
FHE-based CNN

ML frameworks such as PyTorch offer multiple memory for-
mats dictating the data order of tensors (e.g., channel-last
memory format). Each format requires a distinct kernel to
process the same operation. This concept applies similarly in
the context of FHE, where the memory format is analogous
to packing in FHE, although packing has more significant
performance implications. Numerous studies [2, 4, 8] have
proposed different packing methods for FHE-based CNN, but
they did not account for bootstrapping. More recently, [16]
demonstrated an FHE-based CNN implementation with boot-
strapping operations. The packing method introduced in [16]
utilizes a single dense packing, which can effectively mini-
mize the number of bootstrapping. However, their method
suffers from the high cost of frequent homomorphic rotation
operations, which are required to maintain the fixed packing
method of [16], whereas input and output ciphertexts have
different data orientations in FHE-based convolution layers;
rotations account for more than 83% of the total convolution
time in [16].

To mitigate this inefficiency, we designed HyPHEN, an
FHE-based CNN library incorporating multiple packing meth-
ods. By offering flexibility in the packing methods, we min-
imize the cost for rotations by choosing different packing
methods before and after each convolution layer. Figure 1
depicts our construction of ResNet20. Each basic block con-
sists of two different convolution layers (each consuming two
multiplicative levels) arranged in an interleaved manner with
AESPA (each consuming one multiplicative level) activation
functions. We could minimize the cost of bootstrapping by
placing the operation prior to the second activation function in
a basic block, where the number of ciphertexts is small. Please
refer to [11] for a more detailed description of HyPHEN.

2



Table 2: Measured latency of FHE-based CNN inference on an
NVIDIA A100 GPU and estimated latency on SHARP [12], a state-
of-the-art hardware accelerator proposal.

Latency (ms)
ResNet20 ResNet18

[17] (CPU 1-thread) 10,602,000 -
[16] (CPU 1-thread) 2,271,000 -

CPU 64-thread impl. of [16] 180,403 1,337,663
GPU impl. of [16] 8,575 76,503*

AESPA + HyPHEN (GPU) 1,402 14,690

[16] (SHARP) 99 -
AESPA + HyPHEN (SHARP) 30 -

* Due to the limited GPU memory capacity, we could not run ResNet18
directly on the GPU with [16]. To estimate its performance, we assumed
that the GPU can contain the entire working set, ignoring the host-to-GPU
data movement cost. Meanwhile, AESPA + HyPHEN is free from this
problem due to optimizations that effectively reduce the working set size.

5. Evaluation and Discussion
We trained ResNet20 on the CIFAR10 dataset and ResNet18
on the ImageNet dataset using AESPA within PyTorch for
both models. CNN models trained with AESPA show compa-
rable classification accuracies to the original networks with
ReLU. ResNet20 achieves an accuracy of 92.18%, whereas the
original accuracy of ResNet20 is 92.15%. Similarly, ResNet18
achieves an accuracy of 69.78%, whereas the original model’s
accuracy is 69.75%.

The latency of CNN inference for the two models is shown
in Table 2. We reduce the inference latency of ResNet20 to
mere 1.4 seconds, 1,622× faster than reported in [16]. Our
GPU library reduces the execution time by 21.0× compared to
that of our 64-thread CPU implementation. Applying AESPA
and HyPHEN results in an additional 6.12× speedup. Mean-
while, our optimized ResNet18 inference takes 14.7 seconds.

There still exists a vast room for further improvement in
FHE-based CNN performance. In particular, numerous spe-
cialized hardware accelerator designs [12, 13, 15, 20, 21] have
been proposed recently. We estimated the performance of our
CNN implementation on a state-of-the-art hardware accelera-
tor proposal, SHARP [12], through simulation (see Table 2).
Simulation results show that specialized hardware enables
real-time FHE-based CNN inference by reducing the infer-
ence time to as low as 30 milliseconds, 75,700× faster than
the original single-threaded CPU implementation.

References
[1] R. Agrawal, J. Ahn, F. Bergamaschi, R. Cammarota, J. H. Cheon,

F. D. M. de Souza, H. Gong, M. Kang, D. Kim, J. Kim, H. de Lassus,
J. H. Park, M. Steiner, and W. Wang, “High-precision RNS-CKKS on
Fixed but Smaller Word-size Architectures: Theory and Application,”
Cryptology ePrint Archive, Paper 2023/1462, 2023.

[2] E. Aharoni, A. Adir, M. Baruch, N. Drucker, G. Ezov, A. Farkash,
L. Greenberg, R. Masalha, G. Moshkowich, D. Murik, H. Shaul, and
O. Soceanu, “HeLayers: A Tile Tensors Framework for Large Neural
Networks on Encrypted Data,” in Privacy Enhancing Technologies
Symposium (PETS), 2023.

[3] J. Bossuat, C. Mouchet, J. R. Troncoso-Pastoriza, and J. Hubaux,
“Efficient Bootstrapping for Approximate Homomorphic Encryption
with Non-sparse Keys,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques (Eurocrypt),
2021.

[4] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low Latency Pri-
vacy Preserving Inference,” in International Conference on Machine
Learning (ICML), 2019.

[5] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A Full RNS
Variant of Approximate Homomorphic Encryption,” in Selected Areas
in Cryptography (SAC), 2018.

[6] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang, “TensorFHE:
Achieving Practical Computation on Encrypted Data Using GPGPU,”
in IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2023.

[7] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
Annual ACM Symposium on Theory of Computing (STOC), 2009.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy,” in International Confer-
ence on Machine Learning (ICML), 2016.

[9] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and
Fast Secure Two-Party Deep Neural Network Inference,” in USENIX
Security Symposium, 2022.

[10] W. Jung, S. Kim, J. Ahn, J. H. Cheon, and Y. Lee, “Over 100x Faster
Bootstrapping in Fully Homomorphic Encryption through Memory-
centric Optimization with GPUs,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), vol. 2021, no. 4,
2021.

[11] D. Kim, J. Park, J. Kim, S. Kim, and J. Ahn, “HyPHEN: A Hybrid
Packing Method and Optimizations for Homomorphic Encryption-
Based Neural Networks,” arXiv preprint arXiv:2302.02407, 2023.

[12] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. Ahn, “SHARP: A
Short-Word Hierarchical Accelerator for Robust and Practical Fully
Homomorphic Encryption,” in Annual International Symposium on
Computer Architecture (ISCA), 2023.

[13] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. Ahn, “ARK:
Fully Homomorphic Encryption Accelerator with Runtime Data Gen-
eration and Inter-Operation Key Reuse,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022.

[14] S. Kim, W. Jung, J. Park, and J. Ahn, “Accelerating Number Theo-
retic Transformations for Bootstrappable Homomorphic Encryption on
GPUs,” in IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2020.

[15] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. Ahn, “BTS:
An Accelerator for Bootstrappable Fully Homomorphic Encryption,”
in Annual International Symposium on Computer Architecture (ISCA),
2022.

[16] E. Lee, J. Lee, J. Lee, Y. Kim, Y. Kim, J. No, and W. Choi, “Low-
Complexity Deep Convolutional Neural Networks on Fully Homomor-
phic Encryption Using Multiplexed Parallel Convolutions,” in Interna-
tional Conference on Machine Learning (ICML), 2022.

[17] J. Lee, E. Lee, J. Lee, Y. Kim, Y. Kim, and J. No, “Precise Approxi-
mation of Convolutional Neural Networks for Homomorphically En-
crypted Data,” IEEE Access, vol. 11, 2023.

[18] J. Park, M. J. Kim, W. Jung, and J. Ahn, “AESPA: Accuracy Preserving
Low-degree Polynomial Activation for Fast Private Inference,” arXiv
preprint arXiv:2201.06699, 2022.

[19] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2020.

[20] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Accelera-
tor for Fully Homomorphic Encryption,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2021.

[21] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “CraterLake:
A Hardware Accelerator for Efficient Unbounded Computation on
Encrypted Data,” in Annual International Symposium on Computer
Architecture (ISCA), 2022.

[22] P. Voigt and A. Von dem Bussche, The EU General Data Protection
Regulation (GDPR). Springer, 2017.

3


	Introduction
	A GPU Library Supporting RNS-CKKS
	Replacing Activation Functions with AESPA
	HyPHEN: An Efficient Packing Method for FHE-based CNN
	Evaluation and Discussion

