
Amplification of Errors by Encryption
Evgeny Manzhosov Simha Sethumadhavan

Department of Computer Science, Columbia University, New York, New York, USA
{evgeny, simha}@cs.columbia.edu

ABSTRACT

This paper shows how memory encryption amplifies the mag-
nitude of errors miscorrected by the Error Correcting Codes.
Moreover, we conducted a series of fault injections on pro-
grams with and without memory encryption and discovered
that encryption increases the rates of silent data corruption
and hangs.

1. INTRODUCTION

It is hard to imagine a modern enterprise-level CPU with-
out reliability and security features. For example, every
enterprise-level CPU today will offer both Error Correction
Codes (ECC) [1,4] for main memory and memory encryption
to guarantee user data confidentiality [2, 3, 6]. The typical
approach taken by computer architects was to develop and
apply security and reliability techniques independently, i.e.,
without considering the interactions between the two. Our
paper studies the interaction between these system features -
memory encryption and ECC, and reveals interesting results.

Those results are best illustrated with a simple example
involving memory encryption and ECC, as shown in Fig-
ure 1. Let us assume a system with memory encryption and
ECC, e.g., Hamming SEC-DED or Reed-Solomon, to im-
prove memory reliability. In this system, upon data write, the
CPU first encrypts the data into the ciphertext, then computes
the ECC bits of the ciphertext, and, at last, stores both in the
main memory. When the CPU requests data from memory,
the ECC bits and ciphertext are checked for errors, and then
the data is decrypted by the CPU. At first glance, it might
appear that memory encryption, and ECC are completely
orthogonal, and the addition of memory encryption into a
system with ECC has no effect on reliability: the ability of
an error correction code to correct errors is independent of

128b data
... ...

ECC: ERROR
CORRECTOR

ECC: ERROR
CORRECTOR

Unencrypted

(a)

64-bit word
consumed by load

...

...............

DECRYPTION

16b ECC

Encrypted

3 bits are flipped by
alpha particles

64-bit word
consumed by load

(b) (c)

Figure 1: The lower pane of the figure shows how the bit
diffusion of encryption algorithms affects the magnitude
of the miscorrected errors compared to memory without
encryption. If corrupted with a 3-bit error (a), a data
word with ECC might be miscorrected by the ECC (b)
and amplified by encryption into an error of higher mag-
nitude (c) due to bit diffusion during decryption.

whether the data is encrypted or not. It turns out, however,
that reliability is affected.

This effect of encryption on reliability shows in cases when
errors corrected by the ECC are outside of the assumed fault
model, i.e., triple-bit errors for the SEC-DED code. In this
case, if the data is encrypted, such errors will cause more bits
to be erroneous after the decryption due to the diffusion prop-
erty of the encryption algorithms. For instance, a 3-bit error
on a 16-byte block with Reed-Solomon would result in (at
most) four flipped bits without encryption as opposed to 64
flipped bits in the same encrypted 16-byte block after decryp-
tion. Thus, workloads that run on systems with encryption
may experience degradation of reliability guarantees.

This paper provides insight into how encryption-diffused
errors, affect the reliability of CPU workloads. To this end,
we conducted a series of fault injection campaigns, and we
see that all studied workloads experience significant reliabil-
ity degradation. For example, CPU-based workloads experi-
ence up to 6.92× more Silent Data Corruptions (SDC) with
encrypted memories compared to workloads executed on a
system without encryption.

2. METHODOLOGY AND RESULTS

Throughout this study, we fix the data granule of inter-
est to be 16 bytes for two reasons. First, this is the block
size of AES cipher often used in various memory encryption
schemes [3, 6], and second – this is the codeword size of
ECC schemes used in commercial settings, such as Reed-
Solomon-based ECC used in AMD CPUs [1]. We analyze
two types of systems: baseline and secure. Both have
ECC; however, only the secure system has memory encryp-
tion. Furthermore, we assume that during the lifetime of an
application, the data is first encrypted (only in secure) with
AES, then encoded with ECC, and only then it is written to
the main memory. Upon memory read, the same procedure is
performed in reverse: check for errors and then decrypt.

2.1 Fault Injection Process

The backbone of our fault injection infrastructure is CRIU
(Checkpoint and Restore In Userspace) – a utility that check-
points the program’s memory state to disk and restores it later,
resuming execution. In a nutshell, we checkpoint a program
at the time tin j, randomly pick an injection address Ain j in the
checkpoint, and then resume execution, effectively modeling
a case of a program with corrupted memory.
Injection Times and Addresses We use the time utility in
Linux to measure the runtime of all the workloads to ensure
that our fault injection times, tin j, are uniformly sampled
and cover the entire program’s lifetime. To inject the fault
at time tin j, we use the sleep utility to delay CRIU check-

1

0

20

40

60

80

100

O
u

tc
o

m
e

S
h

ar
e,

 %

E NE

bl
en

de
r

E NE

bw
av

es

E NE

ca
ct

us
B

S
S

N

E NE

ca
m

4

E NE
cp

ug
cc

E NE

cp
ux

al
an

E NE

de
ep

sj
en

g

E NE

ex
ch

an
ge

2

E NE

fo
to

ni
k3

d

E NE

im
ag

ic
k

E NE

lb
m

E NE

le
el

a

E NE

m
cf

E NE

na
b

E NE

na
m

d

E NE

om
ne

tp
p

E NE

pa
re

st

E NE

pe
rlb

en
ch

E NE

po
vr

ay

E NE

ro
m

s

E NE

w
rf

E NE

x2
64

E NE

xz

Crashed No Effect SDC Timeout

Figure 2: Results of the Fault Injection experiments for the SPEC’17 benchmarking suite. Each bar shows the share,
in per cents, of each outcome category: Crashed in blue, Timeout in red, SDC in orange, and No Effect in green. For
example, only four programs crashed due to Segmentation Fault – cam4, exchange2, fotonik3d, and wrf.

point command by tin j. Once the program is checkpointed,
we determine the size of the program’s memory state and
pick a random injection address Ain j aligned to the nearest
16B boundary. This way, we ensure that both the injections’
time and address are randomly sampled from the program’s
memory state. Moreover, we use the same checkpoint at tin j
for both the baseline and secure system to guarantee that
both injection trials are consistent and represent the effects of
the same fault in memory, with the only difference being the
amplification of the error by encryption, as described next.
Memory Errors Generation We profile the Reed-Solomon-
based ECC scheme to generate memory errors and find er-
ror patterns miscorrected by ECC. To do so, we randomly
generated 1M of double-chip error patterns (as those are be-
yond the fault model of single-device correct ECC), from
which we kept those detected by ECC as correctable errors.
We randomly pick one of those error patterns, ein j, for both
baseline and secure systems and use it to corrupt the
checkpoint at address Ain j. However, for the secure sys-
tem, we do not use ein j as is; instead, we use it to generate
an encryption-diffused error as a four-step process: (1) we
read 16B of data from the checkpoint at address Ain j, (2)
we encrypt this data with AES, (3) we corrupt the resulting
ciphertext with ein j, (4) decrypt the ciphertext and update the
checkpoint with data corrupted by diffused error. This way,
for the secure system, the checkpoint has an error amplified
by the encryption. We use the same checkpoint for both injec-
tions to ensure that both experiments model the same error,
at the same time, tin j, address Ain j, and error, ein j.
Outcome Classification For each of the injections, we log
the time, address, the memory region the address A belongs
to, e.g., stack, heap, etc. In line with prior work [5], we
assume that if program’s execution is longer than 3x of it
remaining error-free execution time, it entered bad state, and
we terminate it with timeout utility by sending a kill sig-
nal. We later categorize injection outcomes into following
categories:

• Timeout – program execution is longer than 3× its nor-
mal execution time after the injection.

• Crashed – segmentation fault during execution.
• Silent Data Corruption (SDC) – program finished in

time, but the output differs from the error-free execution.

• No Effect – program finished in time and the output
matches error-free case.

2.2 Experimental Setup

We use the methodology described in [7] to get 95% con-
fidence level with 2.1% error margin with 2000 injections
for each workload. To study general-purpose workloads,
we use SPEC-2017 CPU benchmark suite updated to v1.1.9
compiled with g++ 11.3.0 with -O3 optimization level under
Ubuntu 22.04 for aarch64. To allow for reasonable execution
times, we use train inputs for the benchmarks. We conducted
the experiments on the Ampere Altra server with 256GB
RAM and 160-core aarch64 CPU.

2.3 Experimental Results

Figure 2 shows the results of the fault injection campaign
on the SPEC’17 workloads categorized into Crashed (blue),
Timeout (green), SDC (orange), or No Effect (green). We
see from the results that with memory encryption for some
programs, SDC rates increase dramatically, e.g., bwaves
with 6.92×, roms with 3.63×. On the other hand, Time-
outs are application dependent, e.g., bwaves has about 30%
more hangs with encrypted memory, while roms has about
45% fewer timeouts with encrypted memory. These results
show that adding encryption could cause significant reliabil-
ity degradation (SDC) and availability (Timeouts) guarantees,
highlighting the need for security-reliability co-design of the
new generation of reliability features for secure processors.

3. CONCLUSION

In this paper, we reported that adding memory encryp-
tion will degrade the reliability guarantees of the system. To
emphasize the scope of the effect, we analyzed SPEC’17
workloads in the settings of encrypted memory. We saw
that adding encryption increases rates of silent data corrup-
tion and may cause a significant increase in the program’s
hangs. Given current adoption trends of privacy and secu-
rity technologies, these findings would be of interest to the
architectural community.

2

ACKNOWLEDGMENTS

This work was partially supported by Qualcomm Innovation
Fellowship and Google Research Gift.

REFERENCES

[1] “BIOS and Kernel developer’s guide (BKDG) for AMD family 15h
models 00h–0fh processors,” Advanced Micro Devices, Inc., Tech.
Rep., January 2013, rev. 3.14.

[2] “ARM architecture reference manual supplement for ARMv9-A
architecture profile.” ARM Limited, Tech. Rep., 2021, Rev. A.d.

[3] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A Top-Down

Approach,” Mar. 2023, arXiv:2303.15540 [cs]. [Online]. Available:
http://arxiv.org/abs/2303.15540

[4] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, California, USA, 2019, pp. 55–71.

[5] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting dynamic instruction behavior for fast and accurate
microarchitecture level reliability assessment,” in 44th Annual
International Symposium on Computer Architecture (ISCA), 2017, pp.
241–254.

[6] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,”
Advanced Micro Devices, Inc., Tech. Rep., 2021.

[7] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, 2009, pp. 502–506.

3

http://arxiv.org/abs/2303.15540

	Introduction
	Methodology and Results
	Fault Injection Process
	Experimental Setup
	Experimental Results

	Conclusion

