
Accelerating Garbled Circuits by
Hardware-Software Co-Design

Full version available in HAAC [13]
Jianqiao Mo, Brandon Reagen

New York University
{jm8782, bjr5}@nyu.edu

ABSTRACT
Privacy-preserving computation (PPC) has gained traction
to address rising security and privacy concerns. With PPC,
functions are computed directly on encrypted data to secure
it during computation. Garbled circuits (GCs) are a PPC
technology that enable both confidential computing and con-
trol over how data is used. The challenge is that they incur
significant performance overheads compared to plaintext. Re-
cently, we proposed HAAC [13], a novel hardware-software
co-designed GCs accelerator and compiler, to mitigate per-
formance overheads and make PPC more practical. The key
idea of our approach is to express arbitrary GCs programs
as streams, which simplifies hardware and enables complete
memory-compute decoupling. GCs program has a key feature
that it is data oblivious, thus we developed a scratchpad that
captures data reuse by tracking program execution, eliminat-
ing the need for costly hardware managed caches and tagging
logic. We evaluate HAAC with VIP-Bench and achieve an
average speedup of 589× with DDR4 (2,627× with HBM2)
in 4.3mm2 of area.

1. INTRODUCTION
The growing importance of security and privacy under-

scores the need for new solutions that offer strong data pro-
tection. Privacy-preserving computation (PPC) stands out
by providing users with two key advantages: confidentiality
and control. Confidential computing enables computation on
encrypted data, ensuring that service providers cannot view
users’ sensitive data while still providing them high-quality
services. In addition, certain techniques (namely secure multi-
party computation) allow users to control how their data is
used, dictating which functions their data is computed with.
While promising, the wide adoption of all cryptographically
strong PPC techniques is hindered by high computational
overheads, which are too high for most applications today.
To overcome these hurdles and usher in a new era of private
computing, we require innovative hardware solutions.

Numerous PPC techniques are available; we concentrat-
ing on garbled circuits (GCs). Each has its own strengths
and weaknesses. The foreseeable future likely contains a
blend of techniques, as their strengths can be harnessed in
combination to address respective limitations [2, 5, 9]. The
intent of this paper is not to debate whether GCs or, for in-
stance, Homomorphic Encryption (HE) is superior. Instead,
our focus is on illustrating how hardware acceleration can
effectively mitigate the performance overheads associated
with GCs, making their advantages accessible and practical.

A significant advantage of GCs is the ability to support the
implementation of arbitrary functions, such as conditional
code (e.g., ReLU) and complex scientific (e.g., exponen-
tial). This capability allows GCs to be a crucial component
in the execution of private neural inference (PI) [8, 14, 17],

DRAM

OoRWTables
Instrs

SWW

C
ro

ss
ba

r

GE

GE

GE

GE

W
ire

 F
or

w
ar

d 
N

et
w

or
k

Figure 1: HAAC architecture assuming four GEs and
eight SWW banks.
particularly for securely evaluating non-linear activation func-
tions. In contrast, constructing non-linear with alternative
techniques (e.g., arithmetic HE) often leads to a complex
approximation, necessitating model retraining and resulting
in accuracy drop. Meanwhile, prior research has highlighted
that GCs introduce significant overhead, especially in the
hybrid protocols which combine multiple PPCs to uphold
high accuracy PI [6, 10, 11]. Recent studies have shown the
critical role of accelerating GCs to achieve faster PI, but the
associated overheads are substantial [4, 12]. Our experiment
shows that, across eight VIP-Bench benchmarks [1], GCs are
on average 198,000× slower than plaintext.

Multiple factors contribute to GC’s high overhead. First,
each GC gate involves a significant amount of computation,
as they are cryptographic functions, distinct from plaintext
gates. Single GCs AND gate can involve four AES calls, two
key expansions (similar to AES), and a variety of 128-bit
logic operations. Second, processing a function requires ex-
ecuting a large number of gates, as it must be expressed as
Boolean logic. For example, executing a private Bubble Sort
from VIP-Bench requires processing over 12 million gates.
Third, GCs are data intensive. Each plaintext gate’s inputs
and output are represented as a 128-bit ciphertext, and each
(AND) gate involves a unique, 32 Byte, cryptographic con-
stant for processing. Therefore, addressing these challenges
requires the design of a dedicated hardware accelerator to
enhance the efficiency of GCs, as proposed in HAAC (full
version in [13]), a hardware-software co-designed solution,
making GCs computation more practical.

2. MOTIVATION / KEY INSIGHTS
There are two key properties that enable GCs amenable to

effective hardware acceleration. First, the core computations,
though complex, are highly suitable for hardware implemen-
tation. Leveraging custom-logic hardware and parallelism
within gates, HAAC demonstrates significant performance
improvement. Second, GCs are exemplars for hardware-
software co-design as programs are completely data oblivi-
ous [1], i.e., all dependence, memory accesses, and control

1



flow are determined at compile time. We developed pro-
grammable hardware (i.e., ISA support) for executing any
GCs program with high performance and efficiency by re-
lying on the compiler to organize all data movement and
instruction scheduling. As a result, gate computations can be
parallelized, while data is seamlessly moving on- and off-chip
to mask latency. Besides using on-chip scratchpad (SWW);
the irregular data is allowed to stream. Thus, it enables decou-
pling the execution and data access, while still captures most
data reuse. Reminiscent of VLIW, this eliminates costly hard-
ware to extract performance at run-time, allowing more area
to be dedicated to actual computation. Alternative approaches
are possible but tend to be overly restrictive or unnecessary.
Fixed-logic ASICs limit the arbitrary functional support GCs
provide; Systolic arrays and vectors constrain how data is laid
out and computation ordered, which can restrict hardware’s
ability to process all programs well [7]; Dataflow is wasteful,
as the compiler can handle scheduling and avoid allocating
costly structures.

3. OUR PROPOSAL
Building on the insights mentioned above, we proposed

HAAC. This approach includes a compiler, ISA, and hard-
ware accelerator, all working in concert to enhance the per-
formance and efficiency of GCs.

HAAC accelerates individual gate execution through a
dedicated datapath of the hardware unit, the gate engine
(GE). While GEs have the potential for high-performance
computing, the challenge is exploiting gate parallelism and
orchestrating data movement (operands, constants, instruc-
tions) effectively while keeping hardware efficient. A piv-
otal insight is that, with hardware support, the compiler can
express GCs as multiple streams. First, the compiler can
leverage instruction-level parallelism to improve intra/inter-
GE parallel processing. Knowing the precise order of events,
instructions and constants can be streamed to each GE using
queues. On the other hand, managing gate inputs and outputs,
which are often referred to as wires, are more difficult as they
do not follow a linear pattern. Streaming all wires on/off-chip
is wasteful as they exhibit reuse. We first proposed the slid-
ing wire window (SWW) and wire renaming. The SWW is
a scratchpad memory that stores a contiguous address range
of wires, and the range increases as the program executes.
Renaming is a complementary compiler pass that sequential-
izes gate output wire addresses according to program order.
Together, the SWW and renaming effectively filter off-chip
accesses, as recently generated wires are often soon reused
in the circuit. Thus, the SWW provides the performance
benefits of a cache and efficiency of a scratchpad. It is a
feasible solution, but raises another question – how to capture
irregular wire reuse without additional hardware overhead?
Most wire accesses are filtered by the SWW, while misses,
or Out-of-Range (OoR) accesses, still occur as capacity is
limited. OoR accesses cause significant performance degra-
dation in HAAC’s deep, in-order pipelines. To address this,
our second wire optimization is to stream in OoR wires. The
insight is that the compiler knows when and which wires will
be OoR and can push them on-chip to an OoR wire queue. An
important implication of the optimizations is the enabling of
complete decoupling of gate execution and off-chip accesses,

BubbSt DotProd Merse Triangle Hamm MatMult ReLU GradDesc

103

104

Sp
ee

du
p

DDR4 HBM2

Figure 2: Benchmark performance scaling with respect
to GE count, bar clusters show 1, 2, 4, 8, and 16 GEs and
speedup is relative to the CPU.
allowing for total overlap.

To summarize, HAAC is a novel hardware-software co-
design tailored to GCs, including gate engines (GEs) to ac-
celerate gates, queues (instruction, table, and OoR wire),
and scratchpad (SWW). The hardware is programmable and
supports an ISA, with an optimizing compiler for parallel
instruction scheduling (reordering), effective data layout and
memory accesses (renaming), and removing unnecessary off-
chip communication (eliminating spent wires).

Evaluation set-up and experiment details can be found in
the full version [13]. The optimized GE is fully pipelined,
capable of computing a GCs gate and accepting a new input
every cycle. Figure 2 shows HAAC’s speedup relative to run-
ning GCs with CPU. We evaluate performance by scaling GEs
from 1 to 16 with two types of off-chip bandwidth: DDR4
to fairly compare with our CPU and HBM2 to understand
how HAAC benefits from advanced memory technology. In
most cases performance scales well but designs can saturate
DDR4 bandwidth and become memory bound. With HBM2
the performance continues to scale across the range of GEs
considered. Compared to CPU-run GCs, a HAAC accelera-
tor achieves a geomean speedup of 589× with DDR4, and
2,627× with HBM2.

The total area for HAAC, including 16 GEs with a 2 MB
SWW and a 64 KB SRAM, is 4.3 mm2 in 16nm. In HAAC,
most of the chip area goes to the GE. Given the small area
footprint, we assume HAAC would be used as an IP in a
larger SoC, and thus the HBM2 PHY [3, 15, 16] would be
shared. The ultimate measure of performance in PPC is how
well it performs relative to non-encrypted plaintext. With
the same benchmarks, the geomean slowdown compared
to plaintext is 76×. The GradDesc benchmark uses true
floating point, and performing floating point securely is very
expensive relative to plaintext. Considering only integer
benchmarks, the geomean slowdown compared to plaintext
is only 23×.

4. CONCLUSION
We proposed HAAC, a hardware-software co-design to

accelerate GCs. It significantly enhances GCs’ performance
and efficiency. Our contributions encompass the gate engine
(GE), customized memory structures for GCs’ data, a high-
performance compiler, and the sliding wire window (SWW)
for efficient wire reuse.

Overall, HAAC greatly mitigates GCs’ performance over-
head, making the slowdown much more tolerable. We be-
lieve that, potential enhancements, including compiler op-
timizations, increased parallelism (multiple HAAC cores),
and processing-in-memory (PIM), would further bridge this
performance gap.

2



REFERENCES

[1] L. Biernacki, M. Z. Demissie, K. B. Workneh, G. B. Namomsa,
P. Gebremedhin, F. A. Andargie, B. Reagen, and T. Austin,
“Vip-bench: A benchmark suite for evaluating privacy-enhanced
computation frameworks,” in 2021 International Symposium on
Secure and Private Execution Environment Design (SEED), 2021, pp.
139–149.

[2] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” Cryptology ePrint Archive, 2014.

[3] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
K. Eldefrawy, N. Genise, C. Peikert, and D. Sanchez, “F1: A fast and
programmable accelerator for fully homomorphic encryption
(extended version),” 2021.

[4] K. Garimella, Z. Ghodsi, N. K. Jha, S. Garg, and B. Reagen,
“Characterizing and optimizing end-to-end systems for private
inference,” arXiv preprint arXiv:2207.07177, 2022.

[5] H. Geng, J. Mo, D. Reis, J. Takeshita, T. Jung, B. Reagen, M. Niemier,
and X. S. Hu, “Ppimce: An in-memory computing fabric for privacy
preserving computing,” arXiv preprint arXiv:2308.02648, 2023.

[6] Z. Ghodsi, A. Veldanda, B. Reagen, and S. Garg, “Cryptonas: Private
inference on a relu budget,” 2021.

[7] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar,
“Maxelerator: Fpga accelerator for privacy preserving
multiply-accumulate (mac) on cloud servers,” 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6,
2018.

[8] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp.
1651–1669.

[9] M. Keller, “Mp-spdz: A versatile framework for multi-party
computation,” in Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security, 2020, pp. 1575–1590.

[10] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 619–631. [Online]. Available:
https://doi.org/10.1145/3133956.3134056

[11] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2505–2522. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/mishra

[12] J. Mo, K. Garimella, N. Neda, A. Ebel, and B. Reagen, “Towards fast
and scalable private inference,” in Proceedings of the 20th ACM
International Conference on Computing Frontiers, 2023, pp. 322–328.

[13] J. Mo, J. Gopinath, and B. Reagen, “Haac: A hardware-software
co-design to accelerate garbled circuits,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, 2023, pp.
1–13.

[14] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE symposium on
security and privacy (SP). IEEE, 2017, pp. 19–38.

[15] NVIDIA, “Nvidia dgx station a100 system architecture,” 2021.
[Online]. Available:
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-
dgx-station-a100-system-architecture-white-paper.pdf

[16] Rambus, “White paper: Hbm2e and gddr6: Memory solutions for ai,”
2020. [Online]. Available:
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai

[17] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in Proceedings of the
2018 on Asia conference on computer and communications security,
2018, pp. 707–721.

3

https://doi.org/10.1145/3133956.3134056
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai

	Introduction
	Motivation / Key Insights
	Our Proposal
	Conclusion

